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ABSTRACT
Nucleosome-cores were reconstituted by the salt-dialysis

method onto closed circular pDHgl6 DNA which contains a
d(CG/GC)12 sequence. Alternating d(CG/GC)n sequences form
left-handed Z-DNA readily when contained in negatively super-
coiled DNA. We have investigated the ability of the
d(CG/GC)12 sequence to be organized into nucleosome-cores
when stabilized as Z-DNA through negative supercoiling. We have
found that nucleosome assembly at the d(CG/GC)12 insert is
prevented when the sequence is stable in the Z-conformation but
it is not affected at all when the sequence adopts the right-
handed B-form.

INTRODUCTION

DNA in solution may exist under a variety of dif ferent

structural conformations (1). DNA sequences containing alterna-

ting purine and pyrimidine residues are known to undergo transi-

tion to the left-handed Z-DNA conformation in response to chan-

ging environmental conditions (2). In particular, the repetitive

d(CG/GC)n sequence has been shown to form Z-DNA when con-

tained in negatively supercoiled DNA (3,4). Other alternating

(5,6) and non-strictly alternating (7) DNA sequences can also

form Z-DNA through negative supercoiling.

Although no direct evidence for its in vivo existence

has yet been obtained, it has been suggested that the left-handed

Z-conformation may play an important structural or regulatory

function in eukaryotic cells (8). Recent results strongly suggest

that Z-DNA is formed transiently during homologous DNA recombina-

tion (9). On the other hand, a class of nuclear proteins exists

which preferentially recognize the left-handed Z-conformation

(10-12). In particular, a protein factor which mediates homolo-

gous DNA recombination in Ustilago has been shown to be a Z-DNA
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binding protein (13). Eukaryotic DNA is organized as chromatin.

DNA in chromatin is tightly packed into nucleosome-cores which

constitute the basic repetitive structural subunit of chromatin

organization. Considerations of the possible biological role of

Z-DNA in eukaryotes raise the question of the effect of this

alternative DNA conformation on the nucleosomal organization of

chromatin.

In this paper, nucleosome-cores were reconstituted in

vitro by the salt dialysis method onto closed circular pDHgl6

DNA which contains an alternating d(CG/GC)12 sequence stabi-

lized in the left-handed Z-conformation through negative super-

coiling. The ability of the alternating d(CG/GC)12 sequence

to be organized into nucleosomes has been investigated. Others

(14,15) have also addressed this question by studying nucleosome

reconstitution onto the synthetic chemically modified poly(dG-

m5dC) copolymer stabilized in the left-handed Z-conformation

by divalent or multivalent cations. We have found that nucleosome

reconstitution at the d(CG/GC)12 sequence is prevented when

the sequence forms Z-DNA but it is not affected at all when the

alternating d(CG/GC)12 sequence is in the right-handed B-

form. The biological significance of these results is discussed.

Short stretches of alternating d(CG/GC)n sequences are mode-

rately abundant in eukaryotic genomic DNA (16) and they have been

shown to enhance homologous recombination of adjacent sequences

by as much as 15 fold (17). On the other hand, negative supercol-

ling is likely to be an important factor determining Z-DNA stabi-

lity in vivo.

HATERIALS AND METHODS

Histones and DNA

Core-histones were obtained from purified chicken erythro-

cyte nuclei by differential acid extraction according to Johns

(18). Purified core-histones were kept at -200C as an acetone

powder. HI/H5 or HMGs proteins were absent and the four core-

histones were present to approximately equimolecular amounts.

pDHgi6 is a 2.2 kb plasmid derived from pBR322 which

contains a d(CG/GC)12 insertion (19). Plasmid DNA was pre-

pared by standard procedures (20). The linking difference (T) of
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the purified closed circular DNA was fixed by relaxation with

Topoisomerase-I (BRL) in the presence of various concentrations

of ethidium bromide (4). Linking differences of the resulting

plasmids were determined by the band-counting method (21).

Reconstitution of nucleosome-cores

Nucleosome-core reconstitution was carried out by the salt

dialysis method. In summary, purified core-histones were

dissolved to a concentration of 2mg/ml in 1M NaCl, 5.5mM EDTA

pH-7.0. Histones were then incubated. at room temperature for 30

minutes and mixed with the appropiate amounts of pDHgl6 DNA in 2M

NaCl, lOmM EDTA pH=7.3. The salt was then removed by stepwise

dialysis against solutions of decreasing ionic strength : 1.44M

NaCl for 3 hrs., 1.2M NaCl for 3 hrs., 1.OM NaCl for 3 hrs.,

0.85M NaCl for 12 hrs., 0.7M NaCl for 3hrs., 0.6M NaCl for 3

hrs., 0.5M NaCl for 3 hrs., 0.4M NaCl for 18 hrs. and 0.2M NaCl

for 6 hrs. The total reconstitution time was approximately 48

hrs. and all dialysis were carried out at 40C. Reconstituted

complexes were then treated with Topoisomerase-I (BRL) at room

temperature for 16-18 hrs. with 15 enzyme units/pg DNA, deprotel-

nized and analyzed by two dimensional gel electrophoresis as

described below.

Nuclease digestion experiments

Reconstituted complexes were digested with micrococcal

nuclease (SIGMA) at 370C with 0.04 enzyme units(SIGMA)/mg DNA

for 30 minutes in a buffer containing 200 mM NaCl, 3mM CaCl2,

lOmM Tris-HCl pH=7.5. Digestion was stopped by the addition of

EDTA to a final concentration of 15mM. Samples were then depro-

teinized and the micrococcal nuclease resistant DNA fragments

analyzed on a 7X. polyacrilamide-TBE gel. Electrophoresis was

carried out at 150 volts for 3 hrs.

Restriction endonuclease digestions were performed at

370C for 45 minutes with 15 enzyme units/pg DNA in a buffer

containing 1OOmM NaCl, lOmM MgCl2, lOmM Tris-HCl pH=7.5.

Digestion was stopped by the addition of EDTA to a final concen-

tration of 15mM. All restriction enzymes were from New England

Biolabs.

Two-dimensional gel electrophoresis

Two-dimensional agarose gel electrophoresis was performed
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mainly as described by Peck and Wang (22). Gels were formed from

a 1% Agarose-TBE solution and electrophoresed in the first dimen-

sion at room temperature in the presence of TBE at 75 volts

(75mA) for 14 hrs. Gels were then equilibrated for 6-8 hrs. in

TBE buffer containing 2pg/ml of chloroquine phosphate (SIGMA) and

then electrophoresed in the second dimension at 75 volts (9OmA)

for 10 hrs. at room temperature in TBE buffer containing 2pg/ml

of chloroquine phosphate. After electrophoresis, chloroquine was

removed by soaking the gel in distilled water for 30 minutes.

Gels were then stained with ethidium bromide (lpg/ml) for 30

minutes, destained for 90 minutes in distilled water and photo-

graphied under UV light. For quantitation, negatives were scanned

in a Joyce-Loebl densitometer. Each spot was scanned in two

different directions and its intensity determined from the area

contained under the densitometric peak.

RESULTS

Nucleosome-cores were assembled onto negatively supercoiled

pDHgl6 by the salt reconstitution method as described in Mate-

rials and Methods. The fidelity and extent of nucleosome

reconstitution were monitored by micrococcal nuclease digestion

as well as by measuring the change in linking associated to the

formation of nucleosomes.

Efficient nucleosome assembly can be diagnosed by the gene-

ration of distinct DNA fragments resistant to nuclease cleavage.

The effect of micrococcal nuclease digestion on nucleoprotein

complexes obtained at different histone/DNA ratios is shown in

Figure 1. A nuclease resistant fragment of about 146 bp. in

length is always detected, indicating formation of nucleosome-

cores. Furthermore, at the highest histone/DNA ratio assayed

generation of oligonucleosomal particles is also observed.

Reconstitution of nucleosomes onto a closed circular DNA

molecule changes its topological state. Wrapping the DNA around

the octameric histone-core modifies both the writhe and the twist

of the 146 bp. of DNA associated to it. DNA in the core particle

is constrained the equivalent of -1 superhelical turn (21,23). In

order to compensate for this change in topology of the DNA asso-

ciated to the nucleosome-core, the molecule should become positi-
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Figure 1.- Micrococcal nuclease digestion of reconstituted com-

plexes obtained at different input histone/DNA ratios, indicated

by numbers on top. A 7Z polyacrilamide-TBE gel of the micrococcal

nuclease resistant DNA fragments is shown. Lane at the left

corresponds to a pBR322 HaeIII digest used as size marker. Black

arrows indicate the positions corresponding to core and oligo-

nucleosomal DNA. Fast migrating bands correspond to fragments

generated by micrococcal nuclease digestion of naked DNA.

vely supercoiled by as many turns as nucleosomes were introduced

in the molecule. Treatment of the resulting nucleoprotein comn-

plexes with Topoisomerase-I (Topo-I) will incorporate these topo-

logical changes to the DNA itself. Topo-I would restore the

reconstituted complexes to the relaxed state by modifying the

linking number of the DNA molecule. Upon subsequent deproteiniza-

tion, supercoils constrained in nucleosomes would be expressed so

that deproteinization would yield negatively supercoiled DNA with

a linking difference which would reflect exactly the number of

nucleosomes originally present in the complex. In other words, if

a single nucleosome was introduced in the molecule, the linking

difference of the Topo-I treated, deproteinized DNA would be -1.

Complexes differing by one in the number of nucleosomes should

produce deproteinized DNA molecules differing also by one in

their linking differences.
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Figure 2.- Nucleosome-core reconstitution onto closed circular
pDHgl6. (A) Two-Dimensional gel electrophoresis of reconstituted
complexes obtained from negatively supercoiled pDHgl6 (T- -12) at
an input histone/DNA ratio of 1.5 (w/w). After reconstitution,
samples were treated with Topo-I, deproteinized and loaded on a
two-dimensional IX Agarose-TBE gel. First dimension was carried
out in TBE buffer and second dimension was run in TBE containing
2pg/ml of chloroquine phosphate. Numbers indicate the linking
difference (T) of each topoisomer. (B) Schematic representation
of the gel in A, showing superimposed a matrix reflecting the
population average number of nucleosomes (n) present in the
reconstituted complexes. N:nicked, L:linear.

Figure 2, shows a typical result obtained from a nucleosome

reconstitution experiment. In this case, nucleosomes were assem-

bled into negatively supercoiled pDHg16 with an average linking

difference (T) of -12. Nucleosome reconstitution at an input

histone/DNA ratio of 1.5 (w/w) followed by Topo-I treatment and

deproteinization gives rise to a series of topolsomers which can

be resolved by two-dimensional agarose gel electrophoresis. The

distribution of topoisomers shown in Figure 2,A arises from

nucleoprotein complexes which differ in their average number of

nucleosomes (K). The distribution of topoisomers obtained after

Topo-I relaxation of protein-free pDHgi6, defines the position

corresponding to K 0. Under the electrophoretic conditions shown

in Figure 2,A, relaxed pDHg16 runs as positively supercoiled
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showing a distribution of topoisomers formed by mainly four

topoisomers (T:+4,+3,+2 and +1) with a mean linking difference of

To=+2.5. A matrix reflecting the population average number of

nucleosomes present in the reconstituted complexes can then be

superimposed to the distribution of topoisomers in Figure 2,A,

since each additional nucleosome in the complex reduces the

linking difference of the corresponding DNA by one (Figure 2,B).

The non-integer value of To reflects the fact that the size

of pDHgl6 is not a multiple of the helical pitch. As a consequen-

ce, the population average number of nucleosomes corresponding to

each topoisomer is also fractional, although the actual number of

nucleosomes per molecule has to be an integer. For example,

topoisomer T=O in Figure 2,A corresponds to a population average

number of nucleosomes Fi:2.5. meaning that it is generated by half

of the molecules with n<2 and half of the molecules with n>3. An

additional contribution to the heterogeneity of the population of

complexes represented by each topoisomer comes from the fact that

Topo-I relaxation does not result on a unique topoisomer but

instead it produces a Gaussian distribution of topoisomers

reflecting the Boltzman's energies distribution function. In our

case, relaxation of pDHgi6 gives rise to mainly four topoisomers,

T-:+I,+2,+3 and +4 in Figure 2,A, which contribute to the total

population by about 10/, 40%, 40/ and 10% respectively. There-

fore, each topoisomer in Figure 2,A would be the result of the

contribution due to four different classes of reconstituted com-

plexes differing in their precise number of nucleosomes. For

example, topoisomer T=O is generated by 10% of the molecules

containing one nucleosome, 40/ containing two nucleosomes, 40/

containing three nucleosomes and IOZ containing four nucleosomes.

Figure 2, also provides information about the B-Z transition

of the d(CG/GC)12 insert in negatively supercoiled pDHgl6.

The two-dimensional distribution of topoisomers in Figure 2,A,

shows a sharp break centered around topoisomer T=-8, which re-

flects the unwinding due to the formation of Z-DNA within the

d(CG/GC)12 insert. Both the linking difference at which tran-

sition occurs as well as the total winding change obtained from

the transition are in complete agreement with previously reported

results (19). The d(CG/GC)12 sequence is stable in the Z-DNA
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Figure 3.- Effect of nucleosome reconstitution on the stability
of the left-handed Z-form at the d(CG/GC)12 insert in negati-
vely supercoiled pDHgl6 (T=-12). Each nucleosome which gets
reconstituted increases by one the effective number of
unconstrained supercoils, therefore the d(CG/GC)12 would
undergo transition to the right-handed B-form after five nucleo-
somes had been introduced into the DNA molecule. n=nucleosome,
Trlinking difference.

conformation whenever T<-8, but above this value the B-conforma-

tion is favoured.

As it is shown in Figure 3, nucleosome reconstitution onto

negatively supercoiled pDHgl6 has a dramatic effect on the stabi-

lity of the Z-conformation at the d(CG/GC)12 sequence. In the

experiment described in Figure 2, nucleosomes were assembled onto

negatively supercoiled pDHgl6 with T=-12. At this superhelicity

the d(CG/GC)12 insert is stable in the left-handed Z-confor-

mation (19). However, each nucleosome which gets reconstituted

increases by one the effective number of unconstrained supercoils
that is, the effective linking difference (Tc) of the

resulting complex. Therefore, nucleosome reconstitution will
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Figure 4.- Effect of the formation of Z-DNA at the d(CG/GC)12
insert on the cleavage of pDHgl6 by several restriction endo-
nucleases. (A) Two-dimensional gel electrophoresis of a mixed
topoisomer population obtained by Topo-I relaxation in the
presence of different amounts of ethidium bromide. Numbers
correspond to the linking difference (T) of selected topoisomers.
(B) The same population of topoisomers of A but after being
digested with BssHII as described in Materials and Methods. (C)
Same as B but digestion was carried out with BglI. N=nicked,
L=linear.

destabilize the left-handed Z-form at the d(CG/GC)12 insert.

Transition to the B-conformation will take place in any reconsti-

tuted complex containing five or more nucleosomes, since their

effective linking difference Tc)-7 is above the threshold

required to stabilize the Z-conformation at the d(CG/GC)12

insert (19). Therefore, h 5 in Figure 2,B defines the point at

which transition to the B-conformation of the d(CG/GC)12

sequence should occur in the reconstituted complexes. Taking into

account the population origin of each topoisomer in Figure 2 as

well as the Gaussian character of the distribution of topoisomers

corresponding to the starting negatively supercolled pDHgI6 (T=-

12), we found that the actual Z to B transition of the

d(CG/GC)12 sequence in the reconstituted complexes should be

centered around topoisomer T=-2. About 50X of the complexes

giving rise to topoisomer T=-2 would have an effective linking

difference of Tc>-71 thus containing the d(CG/GC)12 in-
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sert in the B-conformation. Any topoisomer with T>-2 would

correspond to reconstituted complexes containing the

d(CG/GC)12 sequence mainly in the Z-conformation (about 80/.

of the complexes giving rise to topoisomer T=-1 would have an

effective linking difference of TC-8). Concurrently, any

topoisomer with T<'-2 corresponds to reconstituted complexes con-

taining the inserted sequence mainly in the B-conformation (only

about 20Z. of the complexes giving rise to topoisomer T--3 Stll

have an effective linking difference of Tc<-8).
To determine whether nucleosomes were reconstituted at the

d(CG/GC)12 insert we took advantage of the fact that this

sequence constitutes a recognizition site for BssHII restriction

endonuclease. This enzyme cleaves pDHgi6 only at the

d(CG/GC)12 insert and it is sensitive to the conformational

state of the recognizition site (24). Cleavage of pDHgl6 with

BssHII is strongly inhibited by the formation of Z-DNA within the

d(CG/GC)12 sequence. As it is shown in Figure 4,B, any topoi-

somer with t>-7, thus containing the d(CG/GC)j2 insert in the

B-conformation, is completely linearized by BssHII after a 45

minutes incubation period. On the other hand, topoisomers wilth

T<-7 which contain the d(CG/GC)12 sequence in the Z-conforma-

tion, are resistant to BssHII cleavage. It is interesting to note

that topoisomer T--7 is partially resistant to BssHII cleavage

although, under these electrophoretic conditions, the

d(CG/GC)12 insert is not stable in the Z-conformation. Ionic

conditions and, in particular divalent cations are known to

affect strongly the B-Z equilibrium (25,26). It is possible that

under the ionic conditions at which BssHII digestion is carried

out, namely lOOmM NaCl, 1OmM MgC12, the d(CG/GC)12 insert

may be already stable in the Z-conformation at this linking

difference and therefore resistant to BssHII cleavage. Alternati-

vely, it is also possible that at this superhelicity the

d(CG/GC)12 sequence would be flipping to the Z-conformation

back and forth, interfering with BssHII cleavage.

Digestion by BglI restriction endonuclease which cleaves

pDHgl6 outside the d(CG/GC)12 insert is not affected by the

formation of Z-DNA within this sequence (Figure 4,C).

Reconstitution of nucleosomes at the d(CG/GC)12 insert
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Figure 5.- Cleavage by BssHII of reconstituted complexes obtained
from negatively supercoiled pDHgI6 (T=-12). Complexes were diges-
ted with BssHII either before (middle panel) or after Topo-I
treatment (right panel). Left panel shows the two-dimensional
distribution of topoisomers obtained from undigested reconsti-
tuted complexes. Numbers correspond to the linking difference (T)
of selected topoisomers. N=nicked, L=linear.

should result in a decreased accessibility of the reconstituted

complexes to BssHII cleavage. The more nucleosomes present in the

complexes the more protected from BssHII cleavage the sequence

would be. Figure 5, shows the accessibility to BssHII of

reconstituted complexes obtained from negatively supercolled

pDHgl6 (Y:-12) as described in Figure 2. As shown in Figure 5,

right panel, reconstituted complexes containing less than five

nucleosomes in average, become freely accessible to BssHII when

they are first treated with Topo-I to release any unconstrained

supercoils, and then subjected to BssHII action. On the other

hand, the same complexes show a marked resistance to cleavage

when they are subjected to BssHII cleavage prior to Topo-I rela-

xation (Figure 5, middle panel). Even topoisomers arising from

complexes containing none or very few nucleosomes are markedly
resistant to BssHII cleavage, indicating that the d(CG/GC)12
insert in these complexes is stable in the Z-conformation prior

to Topo-I relaxation and thus, they are resistant to BssHII

cleavage regardless of nucleosome protection. After Topo-I treat-

ment, all reconstituted complexes would contain the

d(CG/GC)12 insert in the B-conformation. Therefore, BssHII
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Figure 6. Cleavage by BssHII of reconstituted complexes obtained
from relaxed pDHgi6. Complexes were digested with BssHII either
before (middle panel) or after (right panel) Topo-I relaxation.
Left panel shows the distribution of topoisomers obtained from
undigested complexes. Numbers correspond to the linking
difference of selected topoisomers. _=nicked, L=linear.

cleavage in this case is not affected by the conformational state

of the sequence and reflects precisely the degree of protection

due to nucleosome deposition at the d(CG/GC)12 sequence.

Interestingly, the electrophoretic pattern obtained in this case

(Figure 5, right panel), shows a sharp transition from no-protec-

tion to protection occurring at topoisomer T:-2' which, as we have

mentioned earlier, coincides with the point at which transition

to the B-conformation of the d(CG/GC)2 insert in the

reconstituted complexes is expected. The relative degree of pro-

tection from BssHII cleavage after Topo-I treatment for each

topoisomer in Figure 5, right panel, can be determined from the

ratio of its intensity after Topo-I treatment and BssHII diges-
tion (ITopo+BssH) divided by its intensity after Topo-I
treatment alone (ITopo)- As it is shown in Figure 7,A, any

topoisomer with 'r>-2 is highly sensitive to BssHII digestion,
showing that complexes which prior to Topo-I treatment contained

the d(CG/GC)12 sequence stable in the Z-conformation, as

shown by the results in Figure 5, middle panel, are not protected
from endonucleolitic cleavage. This result strongly suggests that

When the d(CG/GC)12 sequence is stable in the left-handed Z-

conformation, nucleosomes are extruded from the sequence so that
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Figure 7.- The relative protection from BssHII cleavage after
Topo-I treatment is shown as a function of the average number of
nucleosomes (ni) for reconstituted complexes obtained from negati-
vely supercoiled pDHgl6 (T=-12) (A) and relaxed pDHgl6 (B). The
relative degree of protection for each topoisomer was determined
from the ratio of its intensity after sequential treatment with
Topo-I and BssHII (ITopo+BssH) divided by its intensity after
Topo-I treatment alone (ITopo)' The results of two indepen-
dent experiments (indicated by solid and open symbols) are
presented. T is the linking difference.

complexes become freely accessible to BssHII after the

d(CG/GC)12 sequence is converted to the B-conformation by

Topo-I treatment. When five or more nucleosomes had been intro-
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duced into the DNA molecule so that the d(CG/GC)i2 sequence

is no longer stable in the Z-conformation in the reconstituted

complexes, nucleosomes are formed at the sequence which now

becomes protected from nuclease degradation after Topo-I treat-

ment as indicated by the marked resistance to BssHII cleavage

shown by topoisomers with T<--2 (Figure 7,A). The degree of

protection from BssHII cleavage levels off after about 9 nuclec-

somes have been reconstituted, indicating that when ni>8 inhibi-

tion of BssHII cleavage is maximum and independent of the actual

number of nucleosomes. Consistently with our interpretation, the

precise topoisomer at which BssHII protection begins, depends on

the actual linking difference of the starting negatively super-

coiled pDHgi6 used for the reconstitution experiment. When

nucleosomes were assembled onto negatively supercoiled pDHgl6

with a T:-20, significant protection was observed after 7-8

nucleosomes were reconstituted (data not shown) which is very

close to the average number of nucleosomes at which maximum

protection is observed (Figure 7).

When nucleosomes are assembled onto relaxed pDHgi6, which

contains the d(CG/GC)12 sequence in the B-conformation (19),

a completely different pattern of BssHII cleavage is obtained

(Figure 6). When BssHII digestion is performed after Topo-I

treatment (Figure 8, right panel), no sharp transition like that

shown for negatively supercoiled pDHgi6 (Figure 5, right panel),

is observed. Instead, a progressive protection to BssHII cleavage

is detected as the number of nucieosomes present in the reconsti-

tuted complexes increases (Figure 7,B). The slope of the curve in

Figure 7,B is very similar to the slope of the upper part of the

curve shown in Figure 7,A which also reflects a progressive

protection. Assuming a random sequence-independent reconstitution

of nucleosomes, any 24 bp. long sequence in pDHgl6 should be

protected from nuclease attack by about lox per each nucleosome

present in the reconstituted complex. Within the experimental

error, the results shown in Figure 7,B, are in good agreement
with this estimate. Generation of positive supercoiling might

account for the small differences detected when BssHII cleavage

is performed before Topo-I treatment (Figure 6, middle panel).

From these results we conclude that nucleosome reconstitution at
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Figure 8.- Cleavage by BglI of reconstituted complexes obtained
from negatively supercoiled pDHgi6 (T=-i2). Complexes were

treated with Topo-I prior to nuclease digestion. Numbers corres-
pond to the linking difference of selected topoisomers. Results
obtained from two independent experiments are shown.

the d(CG/GC)12 sequence is not affected at all by the repeti-

tive nature of the sequence as long as it is maintained in the B-

conformation.

After a similar number of nucleosomes have been reconsti-

tuted, complexes obtained from relaxed pDHgi6 show a slightly

higher degree of protection than complexes obtained from negati-

vely supercoiled pDHgl6 (Figure 7). Several interpretations for

this result are possible. Small systematic differences in the

amount of DNA loaded in the gels might account for these varia-

tions. It is also possible that this differential protection

might arise from a preferential deposition of nucleosomes at the

region flanking the d(CG/GC)j2 insert while the sequence is

stable in the Z-conformation.

The pattern of protection from cleavage by nucleases des-

cribed in Figure 5, right panel for BssHII is characteristic of

the d(CG/GC)12 insertion in pDHgl6. Figure 8, shows the

pattern of digestion obtained for BglI restriction endonuclease

which cleaves pDHgl6 about 910 bp. away from the d(CG/GC)12
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insert. Therefore, it is unlikely that any structural transition

occurring at the d(CG/GC)i2 insert would affect the DNA

region surrounding the BglI site. Nucleosomes were assembled onto

negatively supercoiled pDHgl6 (T=-12) and reconstituted complexes

were treated with Topo-I prior to nuclease digestion. As shown

in Figure 8, the pattern of digestion obtained in this case for

BglI turns out to be very similar to that obtained for BssHII

when nucleosomes were reconstituted into relaxed pDHgl6 (Figure

6, right panel). A pattern of progressive protection is observed

as expected for a random sequence-independent reconstitution of

nucleosomes in this region. These results indicate that the

supercolled state of the DNA by itself does not actually affect

nucleosome reconstitution in a DNA region which is sufficiently

apart from the d(CG/GC)12 insert to be unaffected by any

structural transition occurring at this sequence.

DISCUSSION

In this paper, we have investigated the ability of a

d(CG/GC)12 sequence to be organized into nucleosome-cores

when stabilized in the left-handed Z-conformation through nega-

tive supercoiling. Alternating d(CG/GC)n sequences can form

Z-DNA readily when contained in negatively supercoiled DNA

(3,P,i9). We have found that nucleosome assembly at this simple

repeating DNA sequence is prevented as long as the sequence

remains in the Z-conformation. This conclusion is based on our

observation that, no matter how many nucleosomes were reconsti-

tuted into the DNA, nucleoprotein complexes containing the

d(CG/GC)12 sequence in the Z-conformation become freely

accessible to cleavage by BssHII at the d(CG/GC)12 sequence

after Topo-I treatment. Therefore, when reconstituted complexes

are subjected to BssHII digestion after Topo-I treatment, a

characteristic sharp transition from no-protection to protection

is found associated to the Z to B transition of the

d(CG/GC)12 insert in the reconstituted complexes (Figure 5,

right panel and Figure 7,A). This peculiar pattern of cleavage is

not found when nucleosomes are reconstituted onto relaxed pDHgl6

which contains the d(CG/GC)12 insert in the B-conformation.

In this case, a progressive protection to BssHII cleavage is
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obtained as the number of nucleosomes increases (Figure 6, right

panel and Figure 7,B). Likewise, a pattern of progressive protec-

tion is also obtained when nucleosome reconstitution at a DNA

region far apart from the d(CG/GC)12 insert is investigated

(Figure 8). These results indicate that neither the supercoiled

state of the DNA nor the repetitive character of the

d(CG/GC)12 insert are responsible for the peculiar BssH'L

cleavage pattern shown in Figure 5, right panel.

Others have also studied the in vztro reconstitution of

nucleosomes onto Z-DNA (14,15). They have investigated the abi-

lity to assemble nucleosome-cores onto the linear alternatlng

purine/pyrimidine poly(dG-m5dC) copolymer stabilized in the

left-handed Z-form by divalent or multivalent cations. Because of

the ionic strength dependency of the B-Z transition in poly(dG-

m5dC) (26), nucleosome reconstitution onto this polymer has

to be carried out under rather stringent ionic conditions, namely

at very low NaCl concentration in the presence of either

micromolar concentrations of hexamincobalt or milimolar concen-

trations of magnesium. In this paper, we have extended these

studies to a rather more biologically significant situation. We

have studied nucleosome formation onto a d(CG/GC)12 sequence

when it is stabilized in the Z-conformation through negative

supercoiling, a factor which is believe to play an important role

on the in vivo stabilization of Z-DNA (2). Furthermore, short

stretches of d(CG/GC)n sequences are present to a moderate

extent in eukaryotic genomes (16) and they have been shown to

enhance homologous recombination (17). Finally, instead of con-

fronting histone-cores with DNA molecules which are fully in the

Z-form, we have studied nucleosome reconstitution onto a DRA

molecule which contains both Z-DNA and B-DNA, as it is more

likely to reflect the in vivo situation.

Our results are mainly in agreement with those obtalned by

Nickol et al. (14), since we were unable to detect nucleosome

formation at the d(CG/GC)12 insert when adopting the left-

handed Z-conformation. We cannot exclude the possibility that

nucleosome assembly at the Z-sequence had occurred but to a low

extent going undetected by our techniques. However, from our

results we estimate that the relative affinity of the octameric
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histone-core for B-DNA is at least 50 to 100 fold greater than

for Z-DNA.

Miller et al. (17), had claimed that nucleosomes can be

assembled successfully into Z-DNA though to a low extent when

reconstitution is carried out in the presence of nucleoplasmin.

However, nucleoplasmin or anyother polyanion, appears to be re-

quired when nucleosome assembly is carried out at low ionic

strength or under conditions which favour aggregation. When salt

reconstitution methods are used no such requirement is found and

successful nucleosome assembly has been obtal-ned in the absence

of nucleoplasmin for a variety of synthetic (27,28) and natural

polydeoxinucleotides, including both linear (29-32) and closed

circular molecules (23,33,34), the supercolled state of which

does not influence the fidelity of nucleosome reconstitution

(34).

Z-DNA has a markedly different charge distribution than B-

DNA (8). Transition to the left-handed Z-conformation is likely

to have a strong effect on the precise DNA-protein electrostatic

interactions which govern the stability of the nucleosome-core

particle. The inability of Z-DNA to be organized into nucleosomes

might also be related to its stiffness. DNA in the core particle

is bent to a significant extent (35). Light-scattering studies on

the Z-form of poly(dG-dC) have shown that Z-DNA is stiffer and

has a greater persistance length than B-DNA (30). Therefore it is

more difficult to bent than B-DNA.

Recognizition of functional DNA sequences in chromatin may

be facilitated by nucleosome destabilization. Disruption. of the

regular nucleosomal organization of chromatin, as judged by the

appearance of characteristic nuclease sensitivity patterns,

appears to be a neccesary event for a variety of biological

processes including gene activation. Potentially Z-forming

sequences are found widely spread in eukaryotic DNA (see 2 for a

review). In particular, several promoter regions have been shown

to contain sequences which undergo transition to the Z-conforma-

tion on negatively supercolled DNA (2). Moreover, the repetitive

potentially Z-forming sequences d(CA/GT)n and d(CG/GC)n

have been shown to be hot-spots for recombination (17,37). Even-

tual formation of Z-DNA would disrupt nucleosomal organization at
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these sequences facilitating its interaction with trans-acting

regulatory proteins which might also recognize specifically the

left-handed Z-conformation.
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